Classical and Bayesian Inference for a Progressive First-Failure Censored Left-Truncated Normal Distribution

نویسندگان

چکیده

Point and interval estimations are taken into account for a progressive first-failure censored left-truncated normal distribution in this paper. First, we derive the estimators parameters on of maximum likelihood principle. Subsequently, construct asymptotic confidence intervals based these estimates log-transformed using normality estimators. Meanwhile, bootstrap methods also proposed construction intervals. As Bayesian estimation, implement Lindley approximation method to determine under not only symmetric loss function but asymmetric functions. The importance sampling procedure is applied at same time, highest posterior density (HPD) credible established procedure. efficiencies classical statistical inference evaluated through numerous simulations. We conclude that Bayes given by Linex highly recommended HPD possesses narrowest length among Ultimately, introduce an authentic dataset describing tensile strength 50mm carbon fibers as illustrative sample.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference and Prediction of Burr Type XII Distribution for Progressive First Failure Censored Sampling

This paper deals with Bayesian inference and prediction problems of the Burr type XII distribution based on progressive first failure censored data. We consider the Bayesian inference under a squared error loss function. We propose to apply Gibbs sampling procedure to draw Markov Chain Monte Carlo (MCMC) samples, and they have in turn, been used to compute the Bayes estimates with the help of i...

متن کامل

Classical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data

Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...

متن کامل

Bayesian inference of Weibull distribution based on left truncated and right censored data

This article deals with the Bayesian inference of the unknown parameters of the Weibull distribution based on the left truncated and right censored data. It is assumed that the scale parameter of the Weibull distribution has a gamma prior. The shape parameter may be known or unknown. If the shape parameter is unknown, it is assumed that it has a very general log-concave prior distribution. When...

متن کامل

Likelihood Inference for Left Truncated and Right Censored Lifetime Data

Left truncation and right censoring arise naturally in lifetime data. Left truncation arises because in many situations, failure of a unit is observed only if it fails after a certain period. Often, the units under study may not be followed until all of them fail and the experimenter may have to stop at a certain time when some of the units may still be working. This introduces right censoring ...

متن کامل

Semiparametric likelihood inference for left-truncated and right-censored data.

This paper proposes a new estimation procedure for the survival time distribution with left-truncated and right-censored data, where the distribution of the truncation time is known up to a finite-dimensional parameter vector. The paper expands on the Vardis multiplicative censoring model (Vardi, 1989. Multiplicative censoring, renewal processes, deconvolution and decreasing density: non-parame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2021

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym13030490